

#### Is Now Part of



# ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <a href="https://www.onsemi.com">www.onsemi.com</a>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

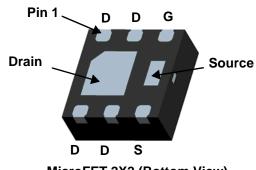


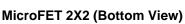
February 2014

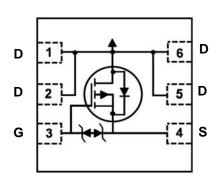
## FDMA908PZ

# Single P-Channel PowerTrench® MOSFET

-12 V, -12 A, 12.5 m $\Omega$ 


#### **Features**


- Max  $r_{DS(on)} = 12.5 \text{ m}\Omega$  at  $V_{GS} = -4.5 \text{ V}$ ,  $I_D = -12 \text{ A}$
- Max  $r_{DS(on)}$  = 18 m $\Omega$  at  $V_{GS}$  = -2.5 V,  $I_D$  = -10 A
- $\blacksquare$  Max  $r_{DS(on)}$  = 28 m $\Omega$  at  $V_{GS}$  = -1.8 V,  $I_D$  = -8 A
- Low Profile 0.8 mm maximum in the new package MicroFET
- HBM ESD protection level > 2.8 kV typical (Note 3)
- Free from halogenated compounds and antimony oxides
- RoHS Compliant




## **General Description**

This device is designed specifically for battery charge or load switching in cellular handset and other ultraportable applications. It features a MOSFET with low on-state resistance and zener diode protection against ESD. The MicroFET 2X2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.







### MOSFET Maximum Ratings T<sub>A</sub> = 25 °C unless otherwise noted

| Symbol                            | Parameter                                        |                        |           | Ratings     | Units |
|-----------------------------------|--------------------------------------------------|------------------------|-----------|-------------|-------|
| $V_{DS}$                          | Drain to Source Voltage                          |                        |           | -12         | V     |
| $V_{GS}$                          | Gate to Source Voltage                           |                        |           | ±8          | V     |
|                                   | Drain Curre -Continuous                          | T <sub>A</sub> = 25 °C | (Note 1a) | -12         | ^     |
| ID                                | -Pulsed                                          |                        |           | -40         | - A   |
| D                                 | Power Dissipation                                | T <sub>A</sub> = 25 °C | (Note 1a) | 2.4         | 10/   |
| $P_{D}$                           | Power Dissipation                                | T <sub>A</sub> = 25 °C | (Note 1b) | 0.9         | W     |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction Temperature Range |                        |           | -55 to +150 | °C    |

#### **Thermal Characteristics**

| $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1a) | 52  | °C/W |
|-----------------|-----------------------------------------|-----------|-----|------|
| $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | (Note 1b) | 145 | C/VV |

#### **Package Marking and Ordering Information**

| Device Marking | Device    | Package      | Reel Size | Tape Width | Quantity   |
|----------------|-----------|--------------|-----------|------------|------------|
| 908            | FDMA908PZ | MicroFET 2X2 | 7 "       | 12 mm      | 3000 units |

# **Electrical Characteristics** $T_J = 25$ °C unless otherwise noted

| Symbol                                 | Parameter                                 | Test Conditions                                  | Min | Тур | Max | Units |
|----------------------------------------|-------------------------------------------|--------------------------------------------------|-----|-----|-----|-------|
| Off Chara                              | cteristics                                |                                                  |     |     |     |       |
| $BV_{DSS}$                             | Drain to Source Breakdown Voltage         | $I_D = -250 \mu A, V_{GS} = 0 V$                 | -12 |     |     | V     |
| $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ | Breakdown Voltage Temperature Coefficient | $I_D$ = -250 $\mu$ A, referenced to 25 °C        |     | -10 |     | mV/°C |
| I <sub>DSS</sub>                       | Zero Gate Voltage Drain Current           | V <sub>DS</sub> = -9.6 V, V <sub>GS</sub> = 0 V  |     |     | -1  | μΑ    |
| I <sub>GSS</sub>                       | Gate to Source Leakage Current            | $V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$ |     |     | ±10 | μΑ    |

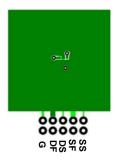
#### **On Characteristics**

| $V_{GS(th)}$                           | Gate to Source Threshold Voltage                         | $V_{GS} = V_{DS}, I_D = -250 \mu A$                                             | -0.4 | -0.6 | -1   | V     |
|----------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|------|------|------|-------|
| $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate to Source Threshold Voltage Temperature Coefficient | $I_D$ = -250 $\mu$ A, referenced to 25 °C                                       |      | 2.8  |      | mV/°C |
|                                        |                                                          | $V_{GS} = -4.5 \text{ V}, I_D = -12 \text{ A}$                                  |      | 10   | 12.5 |       |
|                                        |                                                          | $V_{GS} = -2.5 \text{ V}, I_D = -10 \text{ A}$                                  |      | 13   | 18   |       |
| r <sub>DS(on)</sub>                    | Static Drain to Source On Resistance                     | $V_{GS} = -1.8 \text{ V}, I_D = -8 \text{ A}$                                   |      | 18   | 28   | mΩ    |
|                                        |                                                          | $V_{GS} = -4.5 \text{ V}, I_D = -12 \text{ A},$<br>$T_J = 125 ^{\circ}\text{C}$ |      | 13   | 16   |       |
| 9 <sub>FS</sub>                        | Forward Transconductance                                 | $V_{DD} = -5 \text{ V}, I_{D} = -12 \text{ A}$                                  |      | 63   |      | S     |

#### **Dynamic Characteristics**

| C <sub>iss</sub> | Input Capacitance            | V                                                                  | 2638 | 3957 | pF |
|------------------|------------------------------|--------------------------------------------------------------------|------|------|----|
| C <sub>oss</sub> | Output Capacitance           | $V_{DS} = -6 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$ | 649  | 974  | pF |
| C <sub>rss</sub> | Reverse Transfer Capacitance | 1 - 1 1/11/12                                                      | 602  | 903  | pF |

#### **Switching Characteristics**


| t <sub>d(on)</sub>  | Turn-On Delay Time            |                                                                                                  | 11  | 21  | ns |
|---------------------|-------------------------------|--------------------------------------------------------------------------------------------------|-----|-----|----|
| t <sub>r</sub>      | Rise Time                     | $V_{DD} = -6 \text{ V}, I_{D} = -12 \text{ A},$<br>$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ | 12  | 23  | ns |
| t <sub>d(off)</sub> | Turn-Off Delay Time           | $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6.12$                                                        | 131 | 223 | ns |
| t <sub>f</sub>      | Fall Time                     |                                                                                                  | 71  | 121 | ns |
| $Q_g$               | Total Gate Charge             | $V_{GS} = -4.5 \text{ V}, V_{DD} = -6 \text{ V},$                                                | 24  | 34  | nC |
| $Q_{gs}$            | Gate to Source Charge         | I <sub>D</sub> = -12 A                                                                           | 3.4 |     | nC |
| Q <sub>gd</sub>     | Gate to Drain "Miller" Charge |                                                                                                  | 5.3 |     | nC |

#### **Drain-Source Diode Characteristics**

| V                                                     | Source to Drain Diode Forward Voltage                  | $V_{GS} = 0 \text{ V}, I_{S} = -2 \text{ A}$ (Note 2) | -0.6 | -1.2 | V  |
|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|------|------|----|
| V <sub>SD</sub> Source to Drain Diode Forward Voltage | $V_{GS} = 0 \text{ V}, I_{S} = -12 \text{ A}$ (Note 2) | -0.8                                                  | -1.2 | ٧    |    |
| t <sub>rr</sub>                                       | Reverse Recovery Time                                  | I <sub>E</sub> = -12 A, di/dt = 100 A/μs              | 26   | 42   | ns |
| Q <sub>rr</sub>                                       | Reverse Recovery Charge                                | 1F = -12 A, αι/αι = 100 A/μS                          | 8.5  | 17   | nC |

#### NOTES

<sup>1.</sup> R<sub>BJA</sub> is determined with the device mounted on a 1 in<sup>2</sup> pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R<sub>BJC</sub> is guaranteed by design while R<sub>BCA</sub> is determined by the user's board design.



 a. 52 °C/W when mounted on a 1 in<sup>2</sup> pad of 2 oz copper.



 b. 145 °C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300  $\mu\text{s},$  Duty cycle < 2.0%.
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

## Typical Characteristics T<sub>J</sub> = 25 °C unless otherwise noted

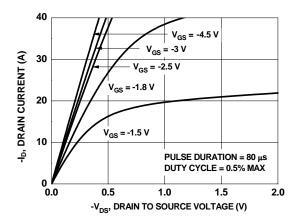



Figure 1. On-Region Characteristics

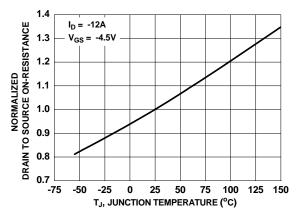



Figure 3. Normalized On-Resistance vs Junction Temperature

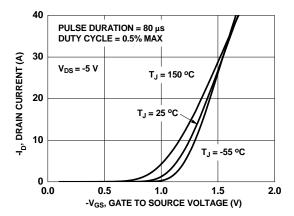



Figure 5. Transfer Characteristics

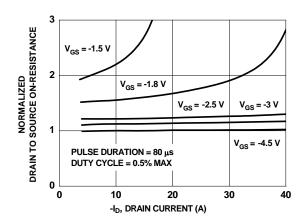



Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

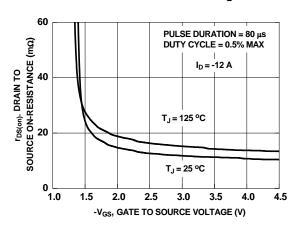



Figure 4. On-Resistance vs Gate to Source Voltage

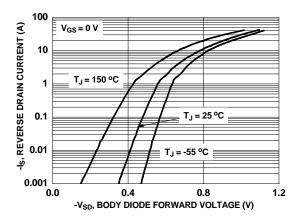



Figure 6. Source to Drain Diode Forward Voltage vs Source Current

## **Typical Characteristics** $T_J = 25$ °C unless otherwise noted

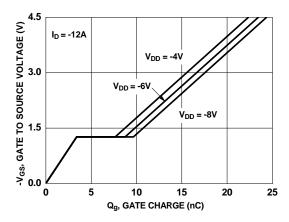



Figure 7. Gate Charge Characteristics

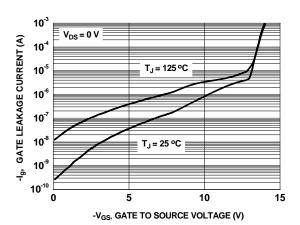



Figure 9. Gate Leakage Current vs Gate to Source Voltage

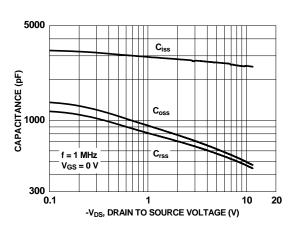



Figure 8. Capacitance vs Drain to Source Voltage

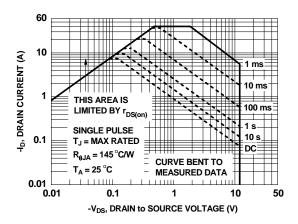



Figure 10. Gate Leakage Current vs Gate to Source Voltage

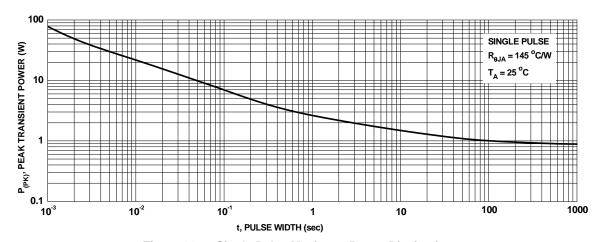
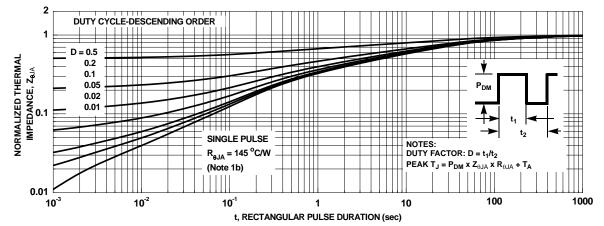
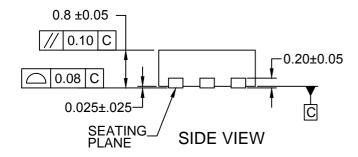
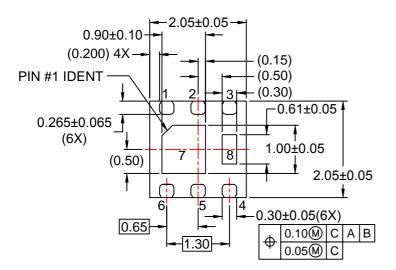
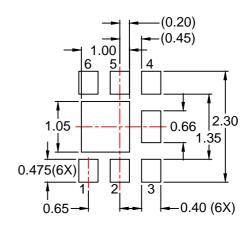



Figure 11. Single Pulse Maximum Power Dissipation

# **Typical Characteristics** $T_J = 25$ °C unless otherwise noted



Figure 12. Junction-to-Ambient Transient Thermal Response Curve







**BOTTOM VIEW** 



#### RECOMMENDED LAND PATTERN

| Pin# | Function |
|------|----------|
| 1    | Drain    |
| 2    | Drain    |
| 3    | Gate     |
| 4    | Source   |
| 5    | Drain    |
| 6    | Drain    |
| 7    | Drain    |
| 8    | Source   |
|      |          |

### NOTES:

- A. PACKAGE DOES NOT CONFORM TO ANY JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-FDMA908Prev1.
- F. REFERENCE DRAWING NO : MKT-MLP06Prev1.



ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdt/Patent-Marking.pdf">www.onsemi.com/site/pdt/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative