

Installation Instructions for the **Transportation Attitude Reference System (TARS Series)** Ruggedized Inertial Measurement Unit (IMU)

Issue B **32332897**

1.0 GENERAL INFORMATION

Honeywell's Transportation Attitude Reference System (TARS) Ruggedized Inertial Measurement Unit (IMU) is designed to provide motion sensing through six degrees of freedom and reporting of angular rate, acceleration, and attitude data through a CAN J1939 interface. It is packaged for harsh environments and demanding applications.

2.0 CALIBRATION

TARS-IMU devices are aligned to a flat surface and calibrated on an aerospace-grade rate table providing consistency between units and eliminating the customer's need to calibrate the IMU.

3.0 INSTALLATION

Mount the sensor using the three mounting holes and three M8 bolts. The mounting tabs accommodate various bolt head styles such as hex, socket head cap, and hex flange bolt head. Torque to 20 Nm ±2 Nm.

- Mating connector: AMPSEAL 16 Series; 776487-1 for 18-16 AWG conductors or 776524-1 for 20-18 AWG conductors
- Mounting direction: +Z

4.0 SPECIFICATIONS

Table 1. Sensor Specifications

Characteristic	Min.	Тур.	Max.	Unit
Gyroscope 3 axis performance				
Angular rate range ¹	-245	-	+245	deg/s
Angular rate resolution	-	7.8125	-	mdps
In-run bias stability	-	1	_	mdps
Rate noise density	-	0.004	-	deg/s/sqrt Hz
Offset (0°C to 50°C)	-0.8	_	+0.8	deg/s
Offset (-40°C to 85°C)	-1.6	-	+1.6	deg/s
Accelerator 3 axis performance				
Acceleration range ¹	-78.48	-	+78.48	m/s ²
Acceleration resolution	-	0.01	-	m/s ²
In-run bias stability	-	50	-	μg
Acceleration noise density	-	65	-	µg∕sqrt Hz
Offset (0°C to 50°C)	-	±0.05	-	m/s ²
Offset (-40°C to 85°C)	-	±0.15	-	m/s ²
Attitude (pitch and roll) performa	ince			
Range ¹	-85	-	+85	deg
Resolution	-	0.058	-	deg
Static error (0°C to 50°C)	-	±0.3	_	deg
Static error (-40°C to 85°C)	-	±0.9	-	deg
Translational acceleration error	-	±0.5	-	deg
Centripetal acceleration error	-	±0.5	-	deg

 1 Sensors are calibrated in the following ranges: $\pm 60 \text{ deg/s}$ for gyroscope angular rate, $\pm 9.81 \text{ m/s}^{2}$ for acceleration, and $\pm 30 \text{ deg}$ for pitch and roll. Calibrated ranges can be extended to maximums shown with deviation to performance specifications.

• Pitch and roll outputs per PGN61481 (Axes marking on the housing is Z-down convention required for pitch and roll outputs per J1939.)

• Acceleration outputs per PGN61485 (Acceleration data is outputted per Z-up convention required by J1939.)

• Angular rate outputs per PGN61482 (Angular rate data is outputted per Z-down convention required by J1939.)

Table 2. Electrical Specifications • TARS-LCASS Catalog Listing

Characteristic	Min.	Nominal	Max.	Unit	
Supply voltage	4.5	5	5.5	V	
Supply current	-	-	100	mA	
Start-up time	500	-	2000	ms	
Short circuit protection	CAN output shorted t	o supply voltage or gro	und without damage		
Open circuit protection	Single-line interruption	on and multiple-line int	terruption		
Reset response	Automatic after voltag	ge dropout			
CAN output characteristics per SAE J	1939				
CAN Bus data rate	– 250 – kBaud				
Signal update rate	-	-	100	Hz	

Table 3. Electrical Specifications • TARS-HCASS Catalog Listing

Characteristic	Min.	Nominal	Max.	Unit	
Supply voltage	9	14/28	36	V	
Supply current	-	-	100	mA	
Reverse voltage	-	-	-36	V	
Overvoltage	-	-	36	V	
Start-up time	500	-	2000	ms	
Short circuit protection	CAN output shorted t	o supply voltage or gro	und without damage		
Open circuit protection	Single-line interruption	on and multiple-line int	erruption		
Reset response	Automatic after voltag	ge dropout			
CAN output characteristics per SAE	t characteristics per SAE J1939				
CAN Bus data rate	-	250	-	kBaud	
Signal update rate	-	-	100	Hz	

Table 4. Environmental Specifications¹

Characteristic	Parameter
Operating temperature	-40°C to 85°C [40 °F to 185°F]
Storage temperature ²	-40°C to 105°C [40°F to 221°F]
Housing	PBT thermoplastic
Random vibration	10 hours at 25 Grms per MIL-STD-810, Method 514.7, Procedure I, Annex D, Category 20, 5 Hz to 500 Hz (flat spectrum)
Mechanical shock	50 g 11 ms half-sine, 3 each direction, 18 total, pulse per MIL-STD-202, Method 213
Chemical compatibility	Diesel fuel, hydraulic oil, ethylene glycol, motor oil, brake fluid, urea nitrogen, liquid lime, NPK fertilizer, ammonium hydroxide, alkaline degreaser, transmission oil, power steering fluid, and axle oil
Moisture resistance	Per MIL-STD-202, Method 106 (10 cycles, 24 hours/cycle)
Thermal shock	250 cycles, -40°C to 85°C, 73 min dwell
Salt spray	5 % salt solution, 96 hours
Ingress protection	IP67, IP69K (DIN40050-1993) with mating connector installed
RoHS	Compliant
REACH	Compliant
UV rating	Housing material meets outdoor suitability requirements per UL746C F1 rating

¹ For environmental conditions not covered by product specification, consult with Honeywell Engineering.

 2 In installed condition; otherwise, maximum storage temperature is 85°C [185°F].

Table 5. EMC Specifications

Characteristic	Standard	Test Level, Frequency
Radiated immunity	ISO 11452-2	125 V/m, 400 MHz to 2.5 GHz
Bulk current injection	ISO 11452-4: 2011	125 mA, 1 MHz to 400 MHz
Radiated emission	ISO 13766	30 MHz to 1 GHz
Mutual coupling	ISO 7637-3	Test pulse A, Test pulse B (-80 V, 80 V)
ESD direct contact discharge	ISO 10605	±8 kV
ESD air discharge	ISO 10605	±15 kV

ISSUE B 32332897

Table 6. Installation Specifications

Characteristic	Parameter
Mating connector	AMPSEAL 16 Series; 776487-1 for 18-16 AWG conductors or 776524-1 for 20-18 AWG conductors
CAN termination	120 Ohm termination resistor, not included in TARS-IMU unit
Weight	170 g approx.
Mounting direction	+Z
Mounting bolt	M8, installation torque 20 Nm ±2 Nm

5.0 DIMENSIONS (For reference only: mm/[in])

5.0 DIMENSIONS (Continued)

Pinout

Marking Information

+Z	Honeywell
Ţ	+X TARS Pat.:hsmpats.com
+Ý	TARS-HCASS 04 X32 001

Where

X32

04 Product configuration code

Date code, where: X: Year code for 2016, Y for 2017, Z for 2018, A for 2019, etc. 32: Week of final test

OO1 is a consecutive number, different for each product

6.0 CAN MESSAGES AND COMMUNICATION

TARS-IMU utilizes CAN J1939 protocol and message format to report data. Please refer to J1939 specification and standards for information regarding communication and implementing CAN J1939 systems.

6.1 CAN J1939 Device Identification

The ID is a 4-byte value to identify the message being transmitted.

- All J1939 messages are Ext CAN
- All messages have default priority
 O (lowest) <= priority <= 0x7 (highest)
- PDU formats < 0xF0 are peer to peer
 PDU Specific is filled with destination address
- PDU formats >= 0xF0 are broadcast
 PDU Specific further defines the message format
- PDU formats = 0xFF are global broadcast
- All J1939 messages end with the sending address in the last byte

Table 7. J1939 ID Format

Extended				P	DU	SA	
Ext CAN	Reserved	Priority	Reserved	Data Page	PDU Format	PDU Specific	Source Address
1 Bit	2 Bits	3 Bits	1 Bit	1 Bit	8 Bits	8 Bits	8 Bits
		1 Byte	^		1 Byte	1 Byte	1 Byte

7.0 TARS-IMU SPECIFIC MESSAGES

The TARS-IMU transmits three messages every 10 ms (100 Hz).

7.1 PGN 61481 (0xF029) Pitch and Roll Angles (°) Broadcast Data

Table 8. PGN 61481 Details

F	Pitch Angl	e	Roll Angle			Status	Latency
1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte
0x00	0x00	0x7D	0x00	0x00	0x7D	0x00	0x0A
BL	BM	BH	BL	BM	BH		

uint32 = $B_{H}^{*}2^{16} + B_{M}^{*}2^{8} + B_{L}$

Angle (°) = (uint32 - 8192000) / 32768

7.2 PGN 61481 Status

The status byte is comprised of compensation status and MEMS status for each value.

Table 9. PGN 61481 Status

Pit	ch	Ro	อแ
Comp	Status	Comp Status	
00b	00b	00b	00b

All status definitions are defined as:

00b = Fully Functional

01b = Degraded

10b = Error

11b = Not Available

e.g., 0xCF029E2, 0x00, 0x00, 0x7D, 0x00, 0x00, 0x7D, 0x00, 0x05

Transmit 0° on both pitch and roll with priority 3, fully functional MEMS and compensation with 5 ms latency from address 0xE2.

7.3 PGN 61482 (0xF02A) Gyro (°/s) Broadcast Data

Table 10. PGN 61482 Details

Pitch	Rate	Roll	Rate	Yaw	Rate	Status	Latency
1 Byte							
0x00	0x7D	0x00	0x7D	0x00	0x7D	0x00	0x0A
BL	BH	BL	BH	BL	BH		

uint16 = $B_{H}^{*}2^{8} + B_{L}$ Rotation Rate (°/s) = (uint16 - 32000) / 128

7.4 PGN 61482 Status

The status byte is comprised of status for each value measure.

Table 11. PGN 61482 Status

	Unused		
Pitch	Roll	Yaw	-
00b	00b	00b	00b

All status definitions are defined as:

00b = Fully Functional

01b = Degraded

10b = Error

11b = Not Available

e.g., 0xCF02AE2, 0x00, 0x7D, 0x00, 0x7D, 0x00, 0x7D, 0x00, 0x05

Transmit 0°/s pitch rate, roll rate, and yaw rate with priority 3, fully functional MEMS with 5 ms latency from address 0xE2.

7.5 PGN 61485 (0xF02D) Accelerometer Broadcast Data

Table 12. PGN 61485 Details

Lateral		Longitudinal		Vertical		Status	Latency
1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte
0x00	0x7D	0x00	0x7D	0x00	0x7D	0x00	0x0A
BL	BH	BL	BH	BL	BH		

uint16 = $B_{H}^{*}2^{8} + B_{L}$

Acceleration Rate $(m/s^2) = (uint16 - 32000) / 100$

The status byte is comprised of status for each value measure.

Table 13. PGN 61485 Status

	Unused		
Lateral	Longitudinal	Vertical	-
00b	00b	00b	00b

All status definitions are defined as:

00b = Fully Functional

01b = Degraded

10b = Error

11b = Not Available

e.g., 0xCF02DE2, 0x00, 0x7D, 0x00, 0x7D, 0xD5, 0x80, 0x00, 0x05

Transmit 0 m/s² on lateral and longitudinal acceleration, and +1 g (9.80665 m/s²) on vertical acceleration with priority 3, fully functional MEMS with 5 ms latency from address 0xE2.

A WARNING PERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

A WARNING IMPROPER INSTALLATION

Consult with local safety agencies and their requirements when designing a machine-control link, interface, and all control elements that affect safety.
Strictly adhere to all installation instructions.

Failure to comply with these instructions could result in death or serious injury.

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship during the applicable warranty period. Honeywell's standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgment or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items that Honeywell, in its sole discretion, finds defective. **The foregoing is buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.**

While Honeywell may provide application assistance personally, through our literature and the Honeywell web site, it is buyer's sole responsibility to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this writing. However, Honeywell assumes no responsibility for its use.

For more information

Honeywell Sensing and Internet of Things services its customers through a worldwide network of sales offices and distributors. For application assistance, current specifications, pricing or the nearest Authorized Distributor, visit sensing.honeywell.com or call:

Asia Pacific +65 6355-2828 Europe +44 (0) 1698 481481 USA/Canada +1-800-537-6945

Honeywell Sensing and Internet of Things

9680 Old Bailes Road Fort Mill, SC 29707 www.honeywell.com

Honeywell