ROBOT

DRIVE THE FUTURI

TMC260 Stepper Motor Driver Shield SKU: DRIO035

: Veyron 1X2A wie

epper Motor Shield

Contents

e 1lIntroduction
e 2 Specification
e 3 Board Overview
o 3.1 TMC260 Control Mode Selection
e 4 Tutorial
0 4.1 Requirements
o 4.2 Sample Code
= 4.2.1SPI Sample Code
= 4.2.2 STEP/DIR Sample Code
e 5 Protocol/Library Explantion

Introduction

Do you want to do some projects with stepper motors? A pair of automatic curtains? An XY
Plotter? A 3D printer? Generally, it's not been easy to find a powerful stepper motor driver for
Arduino, but now this has changed! DFRobot presents the TMC260 Stepper Motor Driver
Shield. This shield allows your Arduino to easily drive stepper motors (up to 2A per motor coil,
40V max).

Specification

Basic Features

Compatible with two-phase
stepper motors

Compatible with Arduino

Up to 2A motor current drive
capability

Up to 40V DC

Simplified communication with
standard SPI™ and STEP/DIR
interfaces

Up to 256 microsteps per full
step

Key Features

StallGuard2™: high precision sensorless motor load
detection

CoolStep™ load dependent current control for energy
saving up to 75%

microPlyer™ : Microstep interpolator for increased
smoothness of microstepping over a STEP/DIR
interface

SpreadCycle™ High-precision chopper algorithm
available as an alternative to the traditional constant
off-time algorithm

Protection & Diagnostics: overcurrent, short to

GND,overtemperature & undervoltage
e Low Power Dissipation, low RDSON and synchronous
rectification

Board Overview

CS (D9-D6) STEP/DIR(D5/D4)

1 NN
i 7T 6 5 4 3 2 10
R 1 YT

L
STEP DIR

le] o B

(R
» []
NERRENEREDR .R]Sﬂl "N
-
-

Veyron 1x2A
tepper Motor Shield

L]
-
g IF-!.rﬁc

o] o

I I = (]
REST
www.DFrobot.com .
3V 5V GND Vin ADA1AZ A3 Ad A5

i
=
w
-4

Power Supply
7V~40V_~

NOTE: We have already lead out some necessary pins on the chip and use mini
jumpers to avoid a jumble of cables.

Label Name Description
DIR(D4)/1 DIR Connect with D4 pin directly
STEP(D5)/2 STEP Connect D5 pin directly with a jumper
3 EN Enable
4 SG Status value output of motor load detection

Chip Select. You can choose D6, D7, D8 or D9 to be the CS pin in SPI
CS(D9-D6)/5 CS

mode
SPI ICSP Serial peripheral interface
Power Supply VIN Voltage in. Voltage range 7~40V DC, 2A max

TMC260 Control Mode Selection

e SPI mode: SDOFF bit is set, the STEP/DIR interface is disabled, and DRVCTRL is the interface for
specifying the currents through each coil.

e STEP/DIR mode:SDOFF bit is clear, the STEP/DIR interface is enabled, and DRVCTRL is a
configuration register for the STEP/DIR interface.

Tutorial

Requirements

e Hardware
0 Arduino UNO (or similar) x1
0 TMC260 Stepper Motor Driver Shield x1
0 Hybrid Stepper Motor for 3D Printer (3.5kg) x1

e Software

Arduino IDE V1.0.6 (/ink)

http://arduino.cc/download.php?f=/arduino-1.0.6-windows.zip
Sample Code

Please Download Library First: Download Link
https://raw.githubusercontent.com/CainZ/TMC260-Stepper-Motor-Driver-
Shield/master/TMC26X Stepper%?20Libraries.zip

SPI Sample Code

You need to give a “sine” a value in SPI mode using function
(tmc26XStepper.SPI_setCoilCurrent(200))

#include <SPI._h>
#include <TMC26XStepper.h>

//we have a stepper motor with 200 steps per rotation,CS pin 6, dir pin 4,
step pin 5 and a current of 800mA
TMC26XStepper tmc26XStepper = TMC26XStepper(200,6,4,5,800);
void setup(Q {
Serial .begin(9600);
Serial .printIn(” ");
Serial _.printIn("’*'TMC26X Stepper Driver Demo App s
Serial .printIn(" ");
//set this according to you stepper
Serial .printIn('Configuring stepper driver™);
//char constant_off_time, char blank _time, char hysteresis_start, char
hysteresis_end, char hysteresis_decrement
tmc26XStepper.setSpreadCycleChopper(2,24,8,6,0);
tmc26XStepper.setRandomOFFTime(0);
tmc26XStepper .SPI_setCoi lCurrent(100);
tmc26XStepper.setMicrosteps(128);
tmc26XStepper.setStallGuardThreshold(4,0);

Serial .printIn(*config finished, starting');
Serial.printin('started");

tmc26XStepper.SPI1_setSpeed(80); //Set speed at 80 RPM

tmc26XStepper.SPI1_step(-200); //set step at -200 steps, that is
to say stepper will turn a circle reverse

tmc26XStepper.spi_start() ; //start stepper

delay(2000); //delay 2s

tmc26XStepper.SPI_step(200); // set step at 200 steps, stepper

will turn a circle forward
tmc26XStepper.spi_start() ;

delay(2000);
tmc26XStepper.SPI_setSpeed(100); // Set speed at 100 RPM
tmc26XStepper.SPI1_step(-300); // stepper will turn 1.5 circles
reverse
tmc26XStepper.spi_start() ;
delay(2000);
tmc26XStepper.SPI1_setSpeed(120); // Set speed at 120 RPM
tmc26XStepper.SPI_step(400); // stepper will turn 2 circles
forward
tmc26XStepper.spi_start() ;
delay(3000);

}
void loop() {

//you can put stepper control code in loop{} to make stepper works
circularly

}

STEP/DIR Sample Code

#include <SPI_h>
#include <TMC26XStepper.h>

//we have a stepper motor with 200 steps per rotation, CS pin 2, dir pin 6, s
tep pin 7 and a current of 800mA

TMC26XStepper tmc26XStepper = TMC26XStepper(200,6,4,5,800);
int curr_step;
int speed = O;

int speedDirection = 100;

int maxSpeed = 1000;

void setup() {
Serial .begin(9600);

Serial .printIn(" ");

Serial .printIn("*TMC26X Stepper Driver Demo App');

Serial .printIn(™ ");

//set this according to you stepper
Serial .printIn(*’Configuring stepper driver'™);

//char constant off _time, char blank time, char hysteresis_start, char hyst
eresis_end, char hysteresis_decrement

tmc26XStepper.setSpreadCycleChopper(2,24,8,6,0);
tmc26XStepper .setRandomOFFTime(0);

tmc26XStepper.setMicrosteps(128);
tmc26XStepper.setStallGuardThreshold(4,0);
Serial .printIn(*config finished, starting');

Serial .printIn('started™);

void loop() {
if (1tmc26XStepper.isMoving()) {
speed+=speedDirection;
if (speed>maxSpeed) {
speed = maxSpeed;
speedDirection = -speedDirection;
} else if (speed<0) {
speedDirection = -speedDirection;
speed=speedDirection;
}
//setting the speed
Serial .print(‘setting speed to ');
Serial .println(speed);
tmc26XStepper .setSpeed(speed) ;

//we want some kind of constant running time - so the length is just a pr
oduct of speed

Serial _.print(*'Going ");
Serial .print(10*speed);
Serial .printIn(’" steps™);
tmc26XStepper.step(10*speed) ;
} else {
//we put out the status every 100 steps
if (tmc26XStepper.getStepsLeft()%100==0) {
Serial .print(*'Stall Guard: ');
Serial .printIn(tmc26XStepper .getCurrentStal lGuardReading());

3
tmc26XStepper.move();

Protocol/Library Explantion

*TMC26XStepper (int number_of steps, int cs pin, int dir_pin, int step_pin, un
signed int current, unsigned int resistor)

number_of steps : Number of steps per rotation

cs_pin : CS: enable pin

dir_pin : Dir: direction pin

step_pin : Step: step pin

resistor : sense resistor current scaling default value is 15 ohms(or 150 mohms). It can be
ignored when you don't need to use that.

*TMC26XSet_SPICS(int cs_pin)

cs_pin : CS pin in SPI mode

*setConstantOffTimeChopper(char constant _off _time, char blank_time, char fast
_decay_time_setting, char sine wave offset, unsigned char use_ current_compara
tor)

constant_off_time : Off time. This setting controls the duration of the slow decay time and
limits the maximum chopper frequency. For most applications an off time within the range of
Sus to 20us will fit.

blank_time : Blanking time.Blanking is the time when the input to the comparator is masked to
block these spikes. Set from 0~54,

hysteresis_start : hysteresis start setting that this value is an offset to the hysteresis end value
HEND.The range is 1~8

hysteresis_end : hysteresis end setting. Set the hysteresis end value from -3~12
hysteresis_decrement : hysteresis decrementer setting, this setting determines the slope of the
hysteresis during on time and during fast decay time

*setCurrent(unsigned int current)

current : set Current,

*SP1_setCoilCurrent(int Current)

Current : Coil Current in SPI mode set from 0 to 248

*setMicrosteps(int number_of steps)

number_of_steps : Microsteps each step set from 0 to 248

*setStal IGuardThreshold(char stall_guard threshold, char stall_guard filter_e
nabled)

stall_guard_threshold : Set threshold of StallGuard to get logical value of StallGuard
stall_guard_filter_enabled : stall guard filter enable (1) , stall guard filter disenable (0)

[e]

*step(int steps_to_move)

steps_to_move : Set the steps to move and use positive and negative to determine the direction
in STEP/DIR mode

*setSpeed(unsigned int whatSpeed)

whatSpeed : Set RPM (revolutions per minute) in STEP/DIR mode

*SPI1_step(int spi_steps_to _move)

spi_steps_to_move : Set the steps to move and use positive and negative to determine the
direction in SPI mode

*SP1_setSpeed(unsigned int whatSpeed)

whatSpeed : Set RPM (revolutions per minute) in SPI mode

*tmc26XStepper .move()

Stepper starts to run n STEP/DIR mode

*tmc26XStepper.spi_start()

Starts to run in SPI mode

Troubleshooting

Stepper Motor

A stepper motor is a special electromagnetic motor which can convert pulse signals into
corresponding angular displacement (or linear displacement). Ordinary motors continuously
rotate, but in stepper motors there are two basic states: positioning and revolving. Once there is a
pulse input, stepper motor will rotate a certain angle, which we call a "step".

Control Mode
The TMC260 driver chip has two different control modes: SPl and STEP/DIR interface.

The TMC260 requires configuration parameters and mode bits to be set through the SPI before
the motor can be driven. The SPI also allows reading back status values and bits. This interface
must be used to initialize parameters and modes necessary to enable driving the motor. This
interface may also be used for directly setting the currents flowing through the motor coils, as
an alternative to stepping the motor using the STEP and DIR signals, so the motor can be
controlled through the SPI interface alone.

The STEP/DIR interface is a traditional motor control interface available for adapting existing
designs to use TRINAMIC motor drivers. Using only the SPI interface requires slightly more CPU
overhead to look up the sine tables and send out new current values for the coils.

NOTE: Our developers didn’t find the specific formula in the datasheet to calculate this sine.
We welcome you to join in development and help us.

1.SPI

The SPI (Serial Peripheral Interface) is a bit-serial interface synchronous to a bus clock. For every
bit sent from the bus master to the bus slave, another bit is sent simultaneously from the slave
to the master. Communication between an SPI master and the TMC260 or TMC261 slave always
consists of sending one 20-bit command word and receiving one 20-bit status word.

The SPI command rate typically corresponds to the microstep rate at low velocities. At high
velocities, the rate may be limited by CPU bandwidth to 10-100 thousand commands per
second, so the application may need to change to fullstep resolution.

2.STEP/DIR

The STEP/DIR interface is enabled by default. On each active edge, the state sampled from the
DIR input determines whether to step forward or back. Each step can be a fullstep or a
microstep, in which there are 2, 4, 8, 16, 32, 64, 128, or 256 microsteps per fullstep. During
microstepping, a step impulse with a low state on DIR increases the microstep counter and a
high decreases the counter by an amount controlled by the microstep resolution. An internal
table translates the counter value into the sine and cosine values which control the motor
current for microstepping.

If you have any questions or cool ideas to share, please visit DFRobot Forum

Powered By DFRobot © 2008-2017

