TriacsSilicon Bidirectional Thyristors

Designed for high performance full-wave ac control applications where high noise immunity and high commutating di/dt are required.

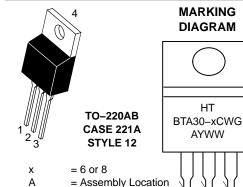
Features

- Blocking Voltage to 800 V
- On-State Current Rating of 30 Amperes RMS at 95°C
- Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to $dV/dt 500 V/\mu s$ minimum at $150^{\circ}C$
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220AB Package Internally Isolated
- High Commutating dI/dt 4.0 A/ms minimum at 150°C
- Internally Isolated (2500 V_{RMS})
- These are Pb-Free Devices

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (T _J = -40 to 150°C, Sine Wave, 50 to 60 Hz, Gate Open)	V _{DRM,} V _{RRM}		V
BTA30H-600CW3G BTA30H-800CW3G		600 800	
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, T _C = 95°C)	I _{T(RMS)}	30	Α
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _C = 25°C)	I _{TSM}	400	A
Circuit Fusing Consideration (t = 8.3 ms)	l ² t	667	A ² sec
Non-Repetitive Surge Peak Off-State Voltage (T _J = 25°C, t = 8.3 ms)	V _{DSM/} V _{RSM}	V _{DRM} /V _{RRM} +100	V
Peak Gate Current (T _J = 150°C, t \leq 20 μ s)	I_{GM}	4.0	Α
Average Gate Power (T _J = 150°C)	P _{G(AV)}	0.5	W
Operating Junction Temperature Range	TJ	-40 to +150	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C
RMS Isolation Voltage (t = 300 ms, R.H. \leq 30%, T _A = 25°C)	V _{iso}	2500	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


 V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Littelfuse.com

TRIACS 30 AMPERES RMS 600 thru 800 VOLTS

Y WW G	= Year = Work Week = Pb-Free Package
	PIN ASSIGNMENT
1	Main Terminal 1
2	Main Terminal 2
3	Gate

ORDERING INFORMATION

No Connection

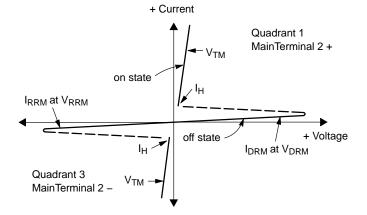
Device	Package	Shipping
BTA30H-600CW3G	TO-220AB (Pb-Free)	50 Units / Rail
BTA30H-800CW3G	TO-220AB (Pb-Free)	50 Units / Rail

THERMAL CHARACTERISTICS

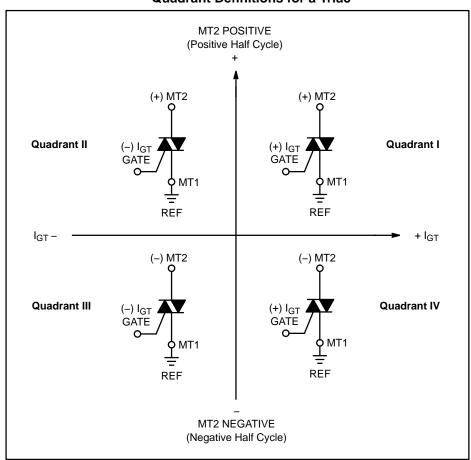
Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (AC) Junction-to-Ambient	$R_{ hetaJC} \ R_{ hetaJA}$	1.8 60	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 seconds	T_L	260	°C

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	<u>'</u>				
Peak Repetitive Blocking Current $(V_D = Rated \ V_{DRM}, \ V_{RRM}; \ Gate \ Open) \\ T_J = 25^{\circ}C \\ T_J = 150^{\circ}C$	I _{DRM} , I _{RRM}	_ _		0.005 15	mA
ON CHARACTERISTICS					
Peak On-State Voltage (Notes 2 and 3) (I _{TM} = ±42 A Peak)	V _{TM}	_	-	1.55	V
Threshold Voltage, TJ = 150°C (Note 2)	V _{to}	-	-	0.85	V
Dynamic Resistance, TJ = 150°C (Note 2)	R _d	-	-	16	mΩ
Gate Trigger Current (Continuous dc) (V_D = 12 V, R_L = 30 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)	I _{GT}	8.0 8.0 8.0	- - -	35 35 35	mA
Holding Current ($V_D = 12 \text{ V}$, Gate Open, Initiating Current = $\pm 100 \text{ mA}$)	I _H	-	-	50	mA
Latching Current ($V_D = 12 \text{ V}, I_G = 42 \text{ mA}$) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)	IL	- - -	- - -	75 75 75	mA
Gate Trigger Voltage (V_D = 12 V, R_L = 30 Ω) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)	V _{GT}	- - -	- - -	1.3 1.3 1.3	V
Gate Non-Trigger Voltage ($T_J = 150^{\circ}C$) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)	V _{GD}	0.15 0.15 0.15	- - -	- - -	V
DYNAMIC CHARACTERISTICS					
Rate of Change of Commutating Current, See Figure 10. (Gate Open, T _J = 150°C, No Snubber) (Note 4)	(dl/dt) _c	4.0	-	-	A/ms
Critical Rate of Rise of On–State Current $(T_J = 150 ^{\circ}\text{C}, f = 120 \text{Hz}, I_G = 2 \text{x} I_{GT}, \text{tr} \leq 100 \text{ns})$	dl/dt	-	-	50	A/μs
Critical Rate of Rise of Off-State Voltage $(V_D = 0.66 \text{ x V}_{DRM}, \text{Exponential Waveform, Gate Open, } T_J = 150^{\circ}\text{C})$	dV/dt	500	-	-	V/μs

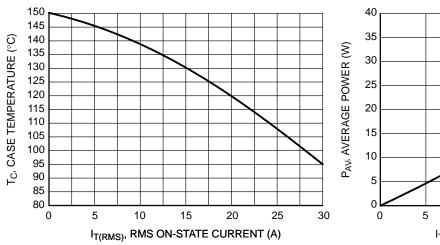

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

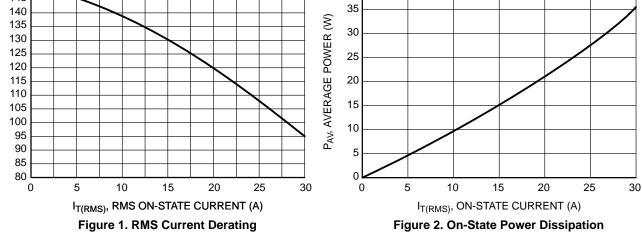
2. Indicates Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%.

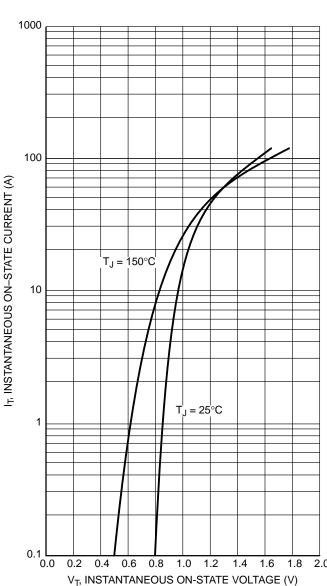

- 3. For both polarities.
- 4. $dv/dt(c) = 35 V/\mu s$ (exponential to 200 Vpk)

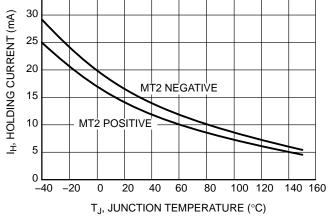
Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current




Quadrant Definitions for a Triac


All polarities are referenced to MT1.


 $\dot{\text{With}}$ in–phase signals (using standard AC lines) quadrants I and III are used.

35

Figure 4. Hold Current Variation

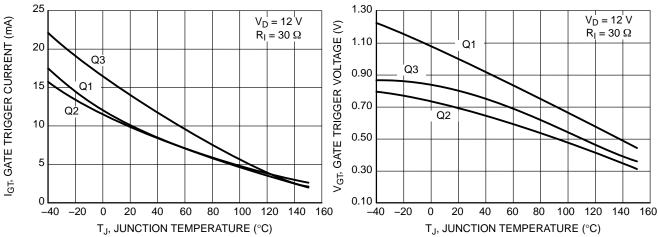


Figure 5. Gate Trigger Current Variation

Figure 6. Gate Trigger Voltage Variation

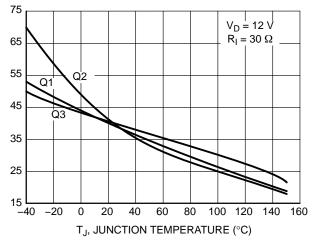
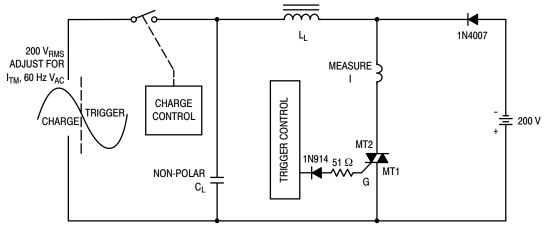
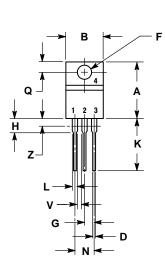



Figure 7. Critical Rate of Rise of Commutating Voltage



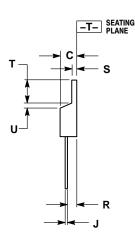

Note: Component values are for verification of rated (di/dt)_c. See AN1048 for additional information.

Figure 8. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)_c

PACKAGE DIMENSIONS

TO-220 CASE 221A-07 **ISSUE AA**

- OTES:
 1 DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION Z DEFINES A ZONE WHERE ALL
 BODY AND LEAD IRREGULARITIES ARE
 ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
J	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 12:

- PIN 1. MAIN TERMINAL 1
 - 2. 3. MAIN TERMINAL 2
 - GATE
 - NOT CONNECTED

Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

Littelfuse.com

6