Page 1 of 11

sparkfun

SparkFun Blocks for Intel® Edison - Pi Block

Introduction

The Pi Block breaks out and level shifts several GPIO pins from the Intel
Edison. It presents them in the same configuration as a Raspberry Pi Model
B.

Pi Block

Suggested Reading

If you are unfamiliar with Blocks, take a look at the General Guide to
Sparkfun Blocks for Intel Edison.

Other tutorials that may help you on your Edison adventure include:

» Edison Getting Started Guide
* Logic Levels

Board Overview

Page 2 of 11

V8YS Jumper USB Power

LED Jumper. ——T

Power LED

Power Button

Expansion Header

Pi Block Functional Diagram

» USB Power - used to provide 5V to Pi Block and power the Edison.
Note that the data lines are not connected to the Edison.

» Power Button - The power switch is connected to the “PWRBTN” line
on the Edison. This give the user the ability to place an Edison in
sleep or power down the module completely. This does not affect
power to other Blocks in the stack.

» Power LED - The power LED illuminates when power is present on
VSYS. This can come from the onboard USB Power or any other
powered Block in the stack.

Expansion Header - The 70-pin Expansion header breaks out the
functionality of the Intel Edison. This header also passes signals and
power throughout the stack. These function much like an Arduino
Shield.

* LED Jumper - If power consumption is an issue, cut this jumper to
disable the power LED.

* VSYS Jumper - By default, a USB cable must be attached to the
USB Power port to provide power to the 5V pins on the RPi B
Header. You can power the Edison and Pi Block from another Block
(e.g. Base Block), but there will not be 5V on the pins labeled “5V”.
By closing this jumper, you can power the Edison and Pi Block from
another Block, and ~4.2V (VSYS) will appear on the pins labeled
“5V”.

* RPi B Header - Same configuration as the old Raspberry Pi Model B
pinout.

Using the Pi Block

To use the Pi Block, attach an Intel® Edison to the back of the board, or
add it to your current stack. Blocks can be stacked without hardware, but it
leaves the expansion connectors unprotected from mechanical stress.

Edison installed on Pi Block

We have a nice Hardware Pack available that gives enough hardware to
secure three blocks and an Edison.

A& ..}
™

|
-

| s A
a% < i)
3 2. CRLN .
» b A
j v

Intel Edison Hardware Pack

NOTE: It is recommended to use a console communication block in
conjunction with this block like ones found in the General Guide to
Sparkfun Blocks for Intel Edison. Once you have the Edison
configured, you can remove the console communication block, power
the Edison from the Pi Block, and SSH into the Edison.

You can put headers on the Edison side, which gives you easy access to

the pin labels. Note that this pinout is mirrored from the Raspberry Pi Model
B pinout.

Headers on Edison side

Alternatively, you can populate the back side of the Pi Block with headers.
This method gives the same pinout as a Raspberry Pi Model B. You could,

in theory, swap the Edison in for your Raspberry Pi on an existing project,
or use Raspberry Pi accessories (e.g. Pi Wedge).

Page 3 of 11

Or put headers on the back side of Pi Block

Using the Pi Block as an output device

If you want to use the Pi Block to control high power LEDs or relays, an
external transistor or MOSFET will be required. It is possible to illuminate a
small LED directly from the level shifter. It may not be as bright since the
current output of the TXB0108 level converter is very low (~5ma).

c |
gpio14 -
Nch |S

Connection Diagram for Load (LED, Motor, or Relay)

In the terminal, we will demonstrate how to activate and use a GPIO pin as
an output.

First navigate to the GPIO directory on the Edison.
cd /sys/class/gpio

Select the GPIO pin to enable. In this case, we used GPIO 14, which is
labeled “GP14” on the Pi Block.

echo 14 > export
Navigate to the newly created GPIO directory.
cd gpiold

If you type “Is”, you should see a bunch of variables.

Page 4 of 11

active_low direction power uevent
device edge subsystem value

Let's set the “direction” of the port to output

echo out > direction
To confirm this, we will “cat” the value

cat direction
You should see the “out” in the command line. Now the device is configured
as an output. “value” is where the status of the pin is set, 1 for high, 0 for
low.

echo 1 > value

Testing with a multi-meter, small led, or oscilloscope, you should see a
“high” status (3.3V) present on gpio14.
Using the Pi Block as an input device

If you want the Pi Block to read switches, buttons, or other logic level
inputs, you must pay attention to pull-up and pull-down resistors. The level
converter on board is very weak. Here are two scenarios explained:

gpio14

Connection Diagram for Active High Push Button

Page 5 of 11

gpio14

Connection Diagram for Active Low Push Button

In the terminal, we will demonstrate how to activate and use a GPIO pin as
an input configured as an active high.

First, navigate to the GPIO directory on the Edison.
cd /sys/class/gpio

Select the GPIO pin to enable. In this case let us use GPIO 14.
echo 14 > export

Navigate to the newly created GPIO directory.
cd gpiold

If you type “Is”, you should see a bunch of variables.

active_low direction power uevent
device edge subsystem value

Let's set the “direction” of the port to output.
echo in > direction

To confirm this, we will “cat” the value.
cat direction

You should see the “in” in the command line. Now the device is configured

as an input. “value” is where the status of the pin is set, 1 for high, 0 for low.

Page 6 of 11

cat value

With a button pressed, you should see a 1. When the button is not pressed
you should see a 0. Using the up arrow, you can recall previously run
commands.

C++ Examples

We’re assuming that you're using the Eclipse IDE as detailed in our Beyond
Arduino tutorial. If you aren’t, you'll need to go to that tutorial to get up to
speed.

Hardware Connection

Hardware support for this library is simple; one basic red LED and one
momentary pushbutton. We're using a 2N3904 NPN transistor to drive the
LED, however, as the drive strength of the outputs on the Pi Block is quite
weak. As you can see in the diagram, you’ll also need a couple of 1kQ
resistors and a single 330Q resistor.

While we've used GP1045 and GPIO46 in this example, this code can be
used with any of the pins on the Pi breakout. The GPIO to MRAA pin map
can be found in the Resources and Going Further section.

Code

Follow the instructions in the programming tutorial to create a new project
named “SparkFun_Pi_Block_Example”. Once you've created the project,
open the “SparkFun_Pi_Block_Example.cpp” file and replace all the
existing code with the code block below.

Page 7 of 11

/***

*ok kKK

Example file for SparkFun Pi Block Support

14 Jul 2015- Mike Hord, SparkFun Electronics
Code developed in Intel's Eclipse IOT-DK

Modified on July 30, 2015 by Shawn Hymel, SparkFun Electroni
cs

This code requires the Intel mraa library to function; for m
ore
information see https://github.com/intel-iot-devkit/mraa

This code is beerware; if you use it, please buy me (or any
other

SparkFun employee) a cold beverage next time you run into on
e of

us at the local.
sk 3k 3k 3k 3k 5k 3K 3k 3k 3k ok 5K 3k 3k 3 5k 5K 5k 3k 3 3k 5k 5k 3k 3k 3 ok 5K 3K 3k 3k 3k 3k 5k 3k 3k 3 3k 5k 5K 3k 3 3k 5k 5K ok 3k 3 3k ok ok %k 3 ok ok >k K

****/

#include "mraa.hpp"

#include <iostream>
#include <unistd.h>

using namespace mraa;
using namespace std;

int main()

{

// 0ddly, GPIO pin assignment numbers when using the MRAA 1i
braries are not

// the same as those inside the operating system. Thus, whi
le we're using

// pin 46 as far as the 0S is concerned to drive the LED, w
e're using pin 32

// as far as MRAA is concerned. The cheat sheet for that ca
n be found here:

// https://github.com/intel-iot-devkit/mraa/blob/master/doc
s/edison.md

Gpio LEDPin(45);

LEDPin.dir(DIR_OUT);

// Now do a quick little flicker.
LEDPin.write(0);

usleep(100000);

LEDPin.write(1);

usleep(100000) ;

LEDPin.write(0);

// Alternatively, we can declare the pin in "raw" mode, whic
h has a slightly

// different and more unwieldy constructor.

Gpio buttonPin(32, true, true);

buttonPin.dir(DIR_IN);

// In this infinite loop, we'll blink the LED once whenever
someone presses

// the button.

while (1)

{

Page 8 of 11

// We *know* that if the IO pin reads as ©, or is low, rea
d() returns zero.
// However, if it's high, it *may* return something els
e; the only guarantee
// is that it will be nonzero. Thus, don't test to see i
f a read() returned
// a1l
if (buttonPin.read() == 0)
{
LEDPin.write(1);
sleep(1);
LEDPin.write(®);
sleep(1);

return MRAA_SUCCESS;
}
Additional Examples

Because this block is just a GPIO access device, the existing MRAA GPIO
examples can be used with it.

| E Example projects in the IDE

When you create a new project in the Eclipse IDE, it will offer you the option
of several starter projects. Some of them, noted above, are good examples
of using the MRAA GPIO functions. They’re more complex than what we've

provided here, however.

For full documentation of the C++ API for GPIO pins, please visit the official

MRAA documentation.

Resources and Going Further

Pin Map

You might have noticed that we used GP46 in hardware and GPIO 32 in
our example code. This is because the MRAA library uses a different
number for the pins. If you would like to use MRAA to control hardware,
figure out which GPIO pins you plan to use on the table below (labeled
“Edison Pin”) and then use the MRAA Number in software.

The available pins on the Pi Block have been highlighted in yellow in the
table.

Notes:

« Input/output voltage on the Pi Block is 3.3V

« Input/output voltage on the GPIO Block is 3.3V by default
* Input/output voltage on the Arduino Breakout is 5V

* Input/output voltage on the Mini Breadboard is 1.8V

MRAA pin map table based on Intel’s IOT Dev Kit Repository

Edison
Pin Arduino Mini MRAA
(Linux) Breakout Breakout Number Pinmode0 Pinmode1

GP12 3 J18-7 20 GPIO-12 PWMO
GP13 5 J18-1 14 GPIO-13 PWM1

GP14 Ad J19-9 36 GPIO-14

Pinmode2

Page 9 of 11

Edison

Pin

(Linux)

GP15

GP19

GP20

GP27

GP28

GP40

GP41

GP42

GP43

GP44

GP45

GP46

GP47

GP48

GP49

GP77

GP78

GP79

GP80

GP81

GP82

GP83

GP84

GP109

GP110

GP111

GP114

GP115

GP128

Arduino
Breakout

13

10

12

11

A0

A1

A2

A3

Mini

Breakout

J20-7

J18-6

J17-8

J17-7

J17-9

J19-10

J20-10

J20-9

J19-11

J19-4

J20-4

J19-5

J20-5

J19-6

J20-6

J19-12

J20-11

J20-12

J20-13

J20-14

J19-13

J19-14

J20-8

J17-11

J18-10

J17-10

J18-11

J17-12

J17-14

MRAA
Number

48

19

37

51

50

38

31

45

32

46

33

47

39

52

53

54

55

40

41

49

10

23

24

11

13

Pinmode0

GPIO-15

GPIO-19

GPIO-20

GPIO-27

GPIO-28

GPI0-40

GPI10-41

GPI10-42

GPIO-43

GPI0-44

GPI10-45

GPI0O-46

GPIO-47

GPI10-48

GPI10-49

GPIO-77

GPIO-78

GPIO-79

GPIO-80

GPIO-81

GPI10-82

GPIO-83

GPIO-84

GPIO-109

GPIO-110

GPIO-111

GPIO-114

GPIO-115

GPI10O-128

Pinmode1

[2C-1-SCL
12C-1-SDA
12C-6-SCL
12C-6-SDA
SSP2_CLK
SSP2_FS
SSP2_RXD

SSP2_TXD

SD

SD

SD

SD

SD

SD

SD

SD
SPI-5-SCK
SPI-5-CS0
SPI-5-CS1

SPI-5-
MISO

SPI-5-
MOSI

UART-1-
CTS

Pinmode2

Page 10 of 11

Edison
Pin Arduino Mini
(Linux) Breakout Breakout

GP129 4 J18-12
GP130 0 J18-13
GP131 1 J19-8
GP134 J20-3
GP135 J17-5
GP165 A5 J18-2
GP182 6 J17-1
GP183 9 J18-8

Edison General Topics:

MRAA
Number Pinmode0 Pinmode1

25 GPIO-129 UART-1-
RTS

26 GPIO-130 UART-1-
RX

35 GPIO-131 UART-1-TX

44

4 GPIO-135 UART

15 GPIO-165

0 GPIO-182 PWM2

21 GPIO-183 PWM3

» General Guide to Sparkfun Blocks for Intel Edison

» Edison Getting Started Guide

- Programming with Arduino

» Loading Debian (Ubilinix) on the Edison

Block Specific Topics:
« Pi Block Github repo

Check out these other Edison related tutorials from SparkFun:

SparkFun Blocks for Intel®
Edison - OLED Block

A quick overview of the features of
the OLED Block for the Edison.

Programming the Intel®
Edison: Beyond the Arduino
IDE

Intel's Edison module goes beyond
being just another Arduino clone.
Check this tutorial for advice on how
to get the most out of your Edison
by writing code in C++!

SparkFun Blocks for Intel®
Edison - Dual H-Bridge

A quick overview of the features of
the Dual H-bridge Block.

e

SparkFun Blocks for Intel®
Edison - ADC V20

A quick overview of the features of
the ADC Block.

Pinmode2

Page 11 of 11

https://learn.sparkfun.com/tutorials/sparkfun-blocks-for-intel-edison---pi-block? ga=1.23... 10/12/2015

