

Hi-Speed USB 2.0 Full-Speed Transceiver with UART Multiplexing Mode

General Description

The MAX3349E \pm 15kV ESD-protected, USB transceiver provides a full-speed USB interface to a lower voltage microprocessor or ASIC. The device supports enumeration, suspend, and VBUS detection. A special UART multiplexing mode routes external UART signals (Rx and Tx) to D+ and D-, allowing the use of a shared connector to reduce cost and part count for mobile devices.

The UART interface allows mobile devices such as PDAs, cellular phones, and digital cameras to use either UART or USB signaling through the same connector. The MAX3349E features a separate UART voltage supply input to support legacy devices using +2.75V signaling. The MAX3349E supports a maximum UART baud rate of 921kbaud.

Upon connection to a USB host, the MAX3349E enters USB mode and provides a full-speed USB 2.0-compliant interface through VP, VM, RCV, and \overline{OE} . The MAX3349E features internal series termination resistors on D+ and D-, and an internal 1.5k Ω pullup resistor to D+ to allow the device to logically connect and disconnect from the USB while plugged in. A suspend mode is provided for low-power operation. D+ and D- are protected from electrostatic discharge (ESD) up to ±15kV.

The MAX3349E is available in 16-pin TQFN (4mm x 4mm) and 16-bump UCSPTM (2mm x 2mm) packages, and is specified over the -40°C to +85°C extended temperature range.

Applications

Cell Phones PDAs Digital Cameras MP3 Players

Features

- ±15kV ESD HBM Protection on D+ and D-
- ♦ UART Mode Routes External UART Signals to D+/D-
- Internal Linear Regulator Allows Direct Powering from the USB Cable
- Separate Voltage Input for UART Transmitter/Receiver (VUART)
- Internal 1.5kΩ Pullup Resistor on D+ Controlled by Enumerate Input
- Internal Series Termination Resistors on D+ and D-
- Complies with USB Specification Revision 2.0, Full-Speed 12Mbps Operation
- Built-In Level Shifting Down to +1.4V, Ensuring Compatibility with Low-Voltage ASICs
- VBUS Detection
- Combined VP and VM Inputs/Outputs
- No Power-Supply Sequencing Required
- Available in 16-Bump UCSP (2mm x 2mm) Package

_Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3349EEBE-T	-40°C to +85°C	16 UCSP
MAX3349EEBE+T	-40°C to +85°C	16 UCSP
MAX3349EETE*	-40°C to +85°C	16 TQFN-EP**

*Future product—contact factory for availability.

T = Tape and reel.

+Denotes a lead(Pb)-free/RoHS-compliant package.

**EP = Exposed pad.

Pin Configurations

UCSP is a trademark of Maxim Integrated Products, Inc.

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise r	,
VDART, VL, VBUS, D+, D VTRM0.3V to (V	
VP, VM, SUS, RX, TX, ENUM, RCV, OE, BD, -0.3V to	
Short Circuit Current (D+ and D-)	
Maximum Continuous Current (all other pins)	±15mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
UCSP (derate 8.2mW/°C above +70°C)	659.5mW
TQFN (derate 25.0mW/°C above +70°C)	2000mW

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Bump Temperature (soldering, reflow)	
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{BUS} = +3.0V \text{ to } +5.5V, V_{UART} = +2.7V \text{ to } +3.3V, V_{L} = +1.40V \text{ to } +2.75V, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{BUS} = +5V, V_{L} = +1.8V, V_{UART} = +2.75V \text{ (UART Mode), and } T_{A} = +25^{\circ}\text{C}. \text{) (Note 1)}$

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
SUPPLY INPUTS/OUTPUTS (VBU	s, Vuart, Vtrm,	VL)					
V _{BUS} Input Range	V _{BUS}	USB mode		3.0		5.5	V
V _L Input Range	VL	$\begin{array}{l} 4.5V \leq V_{BUS} \leq 5.5V \\ 3.0V \leq V_{BUS} \leq 4.5V \end{array}$		1.40		2.75	V
VUART Input Range	VUART	UART mode		2.7		3.3	V
Regulated Supply-Voltage Output	V _{TRM}	Internal regulator, USB mode	$V_{BUS} > 4.5V$ $V_{BUS} < 4.5V$	3.0 2.8		3.6 3.6	V
Operating V _{BUS} Supply Current	IBUS	Full-speed transmitti 12Mbps, $C_L = 50pFc$	ng/receiving at			10	mA
Operating VUART Supply Current	Ivuart	UART transmitting/re 921kbaud, $C_L = 200$	U U			2.5	mA
Static VUART Supply Current	IVUART(STATIC)	UART mode			3.5	5	μA
Operating V _L Supply Current	IVL	Full-speed transmitting/receiving at 12Mbps, $C_L = 50pF$ on D+ and D-				6	mA
Full-Speed Idle and SE0 Supply Current	IVBUS(IDLE)	Full-speed idle, V _{D+} > +2.7V, V _{D-} < +0.3V			290	400	μA
Current		SE0: $V_{D+} < +0.3V$, V_{E}	_{D-} < +0.3V		340	450	
Static VL Supply Current	IVL(STATIC)	Full-speed idle, SE0, or static UART mode			2	10	μA
Sharing Mode V _L Supply Current	IVL(OFF)	VBUS and VUART not	oresent		2	5	μA
USB Suspend V _{BUS} Supply Current	IVBUS(SUS)	VM, VP unconnected; $\overline{OE} = 1$, SUS = 1			38	65	μA
V _{BUS} DETECTION (BD)		·		•			
USB Power-Supply Detection Threshold	VTH_VBUS			0.4 x VL		0.9 x VL	V
USB Power-Supply Detection Hysteresis	VHYS_VBUS				40		mV
V _L Power-Supply Detection Threshold	Vth_vl				0.7		V

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{BUS} = +3.0V \text{ to } +5.5V, V_{UART} = +2.7V \text{ to } +3.3V, V_{L} = +1.40V \text{ to } +2.75V, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$, unless otherwise noted. Typical values are at $V_{BUS} = +5V$, $V_{L} = +1.8V$, $V_{UART} = +2.75V$ (UART Mode), and $T_{A} = +25^{\circ}\text{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
VUART Power-Supply Detection Threshold	VTH_UART		0.4 x VL	0.65 x VL	0.9 x VL	V
DIGITAL INPUTS/OUTPUTS (VP,	VM, RCV, SUS,	OE, RX, TX, ENUM, BD)				
Input-Voltage Low	VIL				0.3 x VL	V
Input-Voltage High	VIH		0.7 x VL			V
Output-Voltage Low	V _{OL}	I _{OL} = +2mA, V _L > 1.65V I _{OL} = +1mA, V _L < 1.65V			0.4	V
Output-Voltage High	V _{OH}	$I_{OH} = +2mA, V_L > 1.65V$ $I_{OH} = +1mA, V_L < 1.65V$	V _L - 0.4			V
Input Leakage Current	ILKG		-1		+1	μA
ANALOG INPUTS/OUTPUTS (D+,	D- in USB Mode	e)				
Differential Input Sensitivity	VID	V _{D+} - V _{D-}	0.2			V
Differential Common-Mode Voltage	V _{CM}	Includes VID range	0.8		2.5	V
Single-Ended Input Low Voltage	VILSE				0.8	V
Single-Ended Input High Voltage	VIHSE		2.0			V
USB Output-Voltage Low	VUSB_OLD	$R_L = 1.5 k\Omega$ connected to +3.6V			0.3	V
USB Output-Voltage High	VUSB_OHD	$R_L = 15k\Omega$ connected to GND	2.8		3.6	V
Off-State Leakage Current	ILZ		-1		+1	μA
Driver Output Impedance	Z _{DRV}	Steady-state drive	28		43	Ω
Transceiver Capacitance	CIND	Measured from D+/D- to GND		20		pF
Input Impedance	ZIN	Driver off	1			MΩ
D+ Internal Pullup Resistor	R _{PU}	ENUM = 1	1425	1500	1575	Ω
ANALOG INPUTS/OUTPUTS (D+,	, D- in UART Mod	de)				
Input-Voltage High	Vuart_ih	UART mode, +2.70 < V _{UART} < +2.85V	2.0			V
Input-Voltage Low	VUART_IL	UART mode, +2.70V < V _{UART} < +2.85V			0.8	V
Output-Voltage High	Vuart_oh	UART mode, +2.70V < V _{UART} < +2.85V I _{UART_OH} = -2mA	2.2			V
Output-Voltage Low	VUART_OL	UART mode, +2.70V < V _{UART} < +2.85V I _{UART_OL} = +2mA			0.4	V

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{BUS} = +3.0V \text{ to } +5.5V, V_{UART} = +2.7V \text{ to } +3.3V, V_L = +1.40V \text{ to } +2.75V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{BUS} = +5V, V_L = +1.8V, V_{UART} = +2.75V \text{ (UART Mode), and } T_A = +25^{\circ}\text{C}.\text{) (Note 1)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
ESD PROTECTION (D+, D-)						
Human Body Model		(Figures 9 and 10)		±15		kV
IEC 61000-4-2 Air-Gap Discharge				±8		kV
IEC 61000-4-2 Contact Discharge				±8		kV

TIMING CHARACTERISTICS

 $(V_{BUS} = +3.0V \text{ to } +5.5V, V_{UART} = +2.7V \text{ to } +3.3V, V_{L} = +1.4V \text{ to } +2.75V, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{BUS} = +5V, V_{L} = +1.8V, V_{UART} = +2.75V \text{ (UART Mode), and } T_{A} = +25^{\circ}\text{C}.) \text{ (Note 1)}$

PARAMETER	SYMBOL	YMBOL CONDITIONS		ТҮР	МАХ	UNITS	
USB DRIVER CHARACTERISTIC	S (C _L = 50pF)	·					
Rise Time	tFR	10% to 90% of V _{USB_OHD} - V _{USB_OLD} (Figures 1 and 7)	4		20	ns	
Fall Time	tFF	90% to 10% of V _{USB_OHD} - V _{USB_OLD} (Figures 1 and 7)	4		20	ns	
Rise/Fall Time Matching	tfr/tff	Excluding the first transition from idle state (Note 2) (Figures 1 and 7)	90		110	%	
Output Signal Crossover Voltage	VCRS_F	Excluding the first transition from idle state (Note 2) (Figure 2)	1.3		2.0	V	
	to	$V_L > +1.65V$ (Figures 2 and 7)			22.5		
Driver Propagation Delay	^t PLH_DRV	$+1.4V < V_L < +1.65V$ (Figures 2 and 7)			25	ns	
	^t PHL_DRV	$V_L > +1.65V$ (Figures 2 and 7)			22.5		
		$+1.4V < V_L < +1.65V$ (Figures 2 and 7)			25		
Driver Disable Delay	^t PHZ_DRV	High-to-off transition (Figures 3 and 6)		25		ns	
	^t PLZ_DRV	Low-to-off transition (Figures 3 and 6)			25	115	
Driver Enable Delay	^t PZH_DRV	Off-to-high transition (Figures 3 and 7)			25		
	^t PZL_DRV	Off-to-low transition (Figures 3 and 7)			25	ns	
USB RECEIVER CHARACTERIST	TICS (C _L = 15pF	=)					
		$V_L > +1.65V$ (Figures 4 and 8)			25		
Differential Receiver Propagation	^t PLH_RCV	$+1.4V < V_L < +1.65V$ (Figures 4 and 8)			30	20	
Delay	tau aou	$V_{L} > +1.65V$ (Figures 4 and 8)			25	ns	
	^t PHL_RCV	$1.4V < V_L < +1.65V$ (Figures 4 and 8)	30		30		
	to	$V_{L} > +1.65V$ (Figures 4 and 8)			28		
Single-Ended Receiver	^t PLH_SE	+1.4V < V _L < +1.65V (Figures 4 and 8)	4 and 8)		35	ns	
Propagation Delay	to	V _L > +1.65V (Figures 4 and 8)			28		
	^t PHL_SE	+1.4V < V _L < +1.65V (Figures 4 and 8)			35		

TIMING CHARACTERISTICS (continued)

 $(V_{BUS} = +3.0V \text{ to } +5.5V, V_{UART} = +2.7V \text{ to } +3.3V, V_{L} = +1.4V \text{ to } +2.75V, T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$, unless otherwise noted. Typical values are at $V_{BUS} = +5V$, $V_{L} = +1.8V$, $V_{UART} = +2.75V$ (UART Mode), and $T_{A} = +25^{\circ}\text{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
	t	High-to-off transition, $V_L > +1.65V$ (Figure 5)			10		
Single-Ended Receiver Disable	tphz_se	High-to-off transition, +1.4V < V_L < +1.65V (Figure 5)			12		
Delay		Low-to-off transition, $V_L > +1.65V$ (Figure 5)			10	ns	
	^t PLZ_SE	Low-to-off transition, +1.4V < V_L < +1.65V (Figure 5)			12		
Single-Ended Receiver Enable Delay	to 70 00	Off-to-high transition, $V_L > +1.65V$ (Figure 5)			20	ns	
	^t PZH_SE	Off-to-high transition, +1.4V < V_L < +1.65 (Figure 5)			20		
	^t PZL_SE	Off-to-low transition, $V_L > +1.65V$ (Figure 5)			20		
		Off-to-low transition, +1.4V < V_L < +1.65V (Figure 5)			20		
UART DRIVER CHARACTERISTIC	CS (C _L = 200pF)					
Rise Time (D-)	t _{FR_TUART}	10% to 90% of IV _{OHD} - V _{OLD} I (Figure 13)		60	200	ns	
Fall Time (D-)	tff_tuart	90% to 10% of V _{OHD} - V _{OLD} I (Figure 13)		60	200	ns	
Driver Propagation Dalay	^t PLH_TUART	(Figure 13)	70 200		20		
Driver Propagation Delay	^t PHL_TUART	(Figure 13)		70	200	ns	
UART RECEIVER CHARACTERIS	STICS (C _L = 15p	F)					
Receiver (Rx) Propagation Delay	^t PLH_RUART	(Figure 14)			60	ns	
neceiver (nx) riopagation Delay	^t PHL_RUART	(Figure 14)			60	115	
Receiver (Rx) Rise/Fall Time	tfr_ruart	(Figure 14)			45		
	tff_ruart	(Figure 14)			45	ns	

Note 1: Parameters are 100% production tested at $T_A = +25$ °C, unless otherwise noted. Limits over temperature are guaranteed by design.

Note 2: Guaranteed by design; not production tested.

4µs/div

M/IXI/N

Typical Operating Characteristics (V_{BUS} = +5V, V_L = +3.3V, V_{UART} = +2.75V, T_A = +25°C, unless otherwise noted.)

10ns/div

MAX3349E

6

Pin Description

PI	N				
UCSP	TQFN	TYPE	NAME	FUNCTION	
A1	1	POWER	Vuart	UART Supply Voltage. V _{UART} powers the internal UART transmitter and receiver. Connect a regulated voltage between +2.7V and +3.3V to V _{UART} . Bypass V _{UART} to GND with a 0.1 μ F ceramic capacitor.	
A2	2	OUTPUT	RX	UART Receive Output. In UART mode, RX is a level-shifted output that exprettive logic state of D+.	
A3	3	INPUT	ΤX	UART Transmit Input. In UART mode, D- follows the logic state on TX.	
A4	4	OUTPUT	BD	USB Detect Output. When V_{BUS} exceeds the V_{TH-BUS} threshold, BD is logic-high to indicate that the MAX3349E is connected to a USB host. The MAX3349E operates in USB mode when BD is logic-high, and operates in UART mode when BD is logic-low.	
B1	15	POWER	VL	Digital Logic Supply. Connect a +1.4V to +2.75V supply to VL. Bypass VL to GND with a 0.1 μF or larger ceramic capacitor.	
B2	16	I/O	VM	Receiver Output/Driver Input. VM functions as a receiver output when $\overline{OE} = V_L$. VM follows the logic state of D- when receiving. VM functions as a driver input when $\overline{OE} = GND$ (Tables 2 and 3).	
В3	5	I/O	VP	Receiver Output/Driver Input. VP functions as a receiver output when $\overline{OE} = V_L$. VP follows the logic state of D+ when receiving. VP functions as a driver input when $\overline{OE} = GND$ (Tables 2 and 3).	
B4	6	OUTPUT	RCV	Differential Receiver Output. In USB mode, RCV is the output of the USB differential receiver (Table 3).	
C1	14	POWER	Vtrm	Internal Regulator Output. V _{TRM} provides a regulated +3.3V output. Bypass V _{TRM} to GND with a 1 μ F ceramic capacitor. V _{TRM} draws power from V _{BUS} . Do not power external circuitry from V _{TRM} .	
C2	13	INPUT	ENUM	Enumerate Input. Drive ENUM to V _L to connect the internal $1.5k\Omega$ resistor from D+ to V _{TRM} (when V _{BUS} is present). Drive ENUM to GND to disconnect the internal $1.5k\Omega$ pullup resistor. ENUM has no effect when the device is in UART mode.	
C3	8	INPUT	SUS	Suspend Input. Drive SUS low for normal operation. Drive SUS high to force the MAX3349E into suspend mode.	
C4	7	INPUT	ŌĒ	Output Enable. Drive \overline{OE} low to set VP/VM to transmitter inputs in USB mode. Drive \overline{OE} high to set VP/VM to receiver outputs in USB mode. \overline{OE} has no effect when the device is in UART mode.	
D1	12	POWER	VBUS	USB Supply Voltage. V _{BUS} provides power to the internal linear regulator when in USB mode. Bypass V _{BUS} to GND with a 0.1μ F ceramic capacitor.	
D2	11	I/O	D+	USB Differential Data Input/Output. Connect D+ directly to the USB connector.	
D3	10	I/O	D-	USB Differential Data Input/Output. Connect D- directly to the USB connector.	
D4	9	POWER	GND	Ground	
—	EP		EP	Exposed Pad. Connect exposed paddle to GND.	

Figure 1. Rise and Fall Times

Figure 2. Timing of VP and VM to D+ and D-

Figure 3. Driver Enable and Disable Timing

Figure 4. D+/D- Timing to VP, VM, and RCV

_Timing Diagrams

Figure 5. Receiver Enable and Disable Timing

Figure 6. Test Circuit for Disable Time

Detailed Description

The MAX3349E ±15kV ESD-protected, USB transceiver provides a full-speed USB interface to a microprocessor or ASIC. The device supports enumeration, suspend, and V_{BUS} detection. A special UART multiplexing mode routes external UART signals (Rx and Tx) to D+ and D-, allowing the use of a shared connector to reduce cost and part count for mobile devices.

The UART interface allows mobile devices such as PDAs, cellular phones, and digital cameras to use either UART or USB signaling through the same connector. The MAX3349E features a separate UART voltage supply input. The

_Timing Diagrams (continued)

Figure 7. Test Circuit for Enable Time, Transmitter Propagation Delay, and Transmitter Rise/Fall Time

Figure 8. Test Circuit for Receiver Propagation Delay

Figure 9. Human Body ESD Test Model

MAX3349E supports a maximum UART baud rate of 921kbaud.

Upon connection to a USB host, the MAX3349E enters USB mode and provides a full-speed USB 2.0-compliant interface through VP, VM, RCV, and \overline{OE} . The MAX3349E features internal series resistors on D+ and D-, and an internal 1.5k Ω pullup resistor to D+ to allow the device to logically connect and disconnect from the USB bus while plugged in. A suspend mode is provided for low-power operation. D+ and D- are protected from electrostatic discharge (ESD) up to ±15kV. To ensure full ±15kV ESD protection, bypass V_{BUS} to GND

Figure 10. Human Body Model Current Waveform

Figure 11. IEC61000-4-2 ESD Contact Discharge Test Model

with a $0.1 \mu F$ ceramic capacitor as close to the device as possible.

Operating Modes

The MAX3349E operates in either USB mode or UART mode, depending on the presence or absence of V_{BUS}. Bus detect output BD is logic-high when a voltage higher than V_{TH-VBUS} is applied to V_{BUS}, and logic-low otherwise. The MAX3349E operates in USB

Timing Diagrams (continued)

Figure 12. IEC 61000-4-2 Contact Discharge Model Current Waveform

mode when BD is logic-high, and UART mode when BD is logic-low.

USB Mode

In USB mode, the MAX3349E implements a full-speed (12Mbps) USB interface on D+ and D-, with enumerate and suspend functions. A differential USB receiver presents the USB state as a logic-level output RCV (Table 3a). VP/VM are outputs of single-ended USB receivers when OE is logic-high, allowing detection of single-ended 0 (SE0) events. When OE is logic-low, VP and VM serve as inputs to the USB transmitter. Drive suspend input SUS logic-high to force the MAX3349E into a low-power operating mode and disable the differential USB receiver (Table 3b).

UART Mode

The MAX3349E operates in UART mode when BD is logic-low (V_{BUS} not present). The Rx signal is the output of a single-ended receiver on D+, and the Tx input is driven out on D-. Signaling voltage thresholds for D+ and D- are determined by V_{UART}, an externally applied voltage between +2.7V and +3.3V.

Power-Supply Configurations

V_L Logic Supply

In both USB and UART modes, the control interface is powered from V_L. The MAX3349E operates with logic-side voltage (V_L) as low as +1.4V, providing level shifting for lower voltage ASICs and microcontrollers.

Table 1. Power-Supply Configuration

V _{BUS} (V)	V _{TRM} (V)	V _L (V)	VUART(V)	CONFIGURATION
+4.0 to +5.5	+3.0 to +3.6 Output	+1.4 to +2.75	GND, Unconnected, or +2.7V to +3.3V	USB Mode
+3.0 to +5.5	+2.8 to +3.6	+1.4 to +2.75	GND or Unconnected	Battery Mode
+4.0 to +5.5	+3.0 to +3.6 Output	GND or Unconnected	GND, Unconnected, or +2.7V to +3.3V	Disable Mode
GND or Unconnected	High Impedance	+1.4 to +2.75	+2.7V to +3.3V	UART Mode

Table 2. USB Transmit Truth Table ($\overline{OE} = 0$)

INPUTS		OUTPUTS		
VP	VM	D+	D-	
0	0	0	0	
0	1	0	1	
1	0	1	0	
1	1	1	1	

Table 3a. USB Receive Truth Table (OE = 1, SUS = 0)

INP	INPUTS		OUTPUTS			
D+	D-	VP	RCV			
0	0	0	0	RCV*		
0	1	0	1	0		
1	0	1	0	1		
1	1	1	1	Х		

* = Last State

X = Undefined

USB Mode

The MAX3349E is in USB mode when VBUS is greater than VTH-BUS and the bus detect output (BD) is logichigh. In USB mode, power for the MAX3349E is derived from V_{BUS}, typically provided through the USB connector. An internal linear regulator generates the required +3.3V VTRM voltage from VBUS. VTRM powers the internal USB transceiver circuitry and the D+ enumeration resistor. Bypass VTRM to GND with a 1µF ceramic capacitor as close to the device as possible. Do not power external circuitry from VTRM.

Disable Mode Connect V_{BUS} to a system power supply and leave V_L unconnected or connect to ground to enter disable mode. In disable mode, D+ and D- are high impedance, and withstand external signals up to +5.5V. OE, SUS, and control signals are ignored.

Table 3b. USB Receive Truth Table ($\overline{OE} = 1$, SUS = 1)

INPUTS		OUTPUTS			
D+	D-	VP	VM	RCV	
0	0	0	0	0	
0	1	0	1	0	
1	0	1	0	0	
1	1	1	1	0	

UART Mode

Connect VL and VUART to system power supplies, and leave VBUS unconnected or below VTH-BUS to operate the MAX3349E in UART mode. The MAX3349E supports VUART from +2.7V to +3.3V (see Table 1).

USB Control Signals

OF

OE controls the direction of communication for USB mode. When \overline{OE} is logic-low, VP and VM operate as logic inputs, and D+/D- are outputs. When \overline{OE} is logichigh, VP and VM operate as logic outputs, and D+/Dare inputs. RCV is the output of the differential USB receiver connected to D+/D-, and is not affected by the OE logic level.

ENUM

Drive ENUM logic-high to enable the internal $1.5k\Omega$ pullup resistor from D+ to VTRM. Drive ENUM logic-low to disable the internal pullup resistor and logically disconnect the MAX3349E from the USB.

SUS

Operate the MAX3349E in low-power USB suspend mode by driving SUS logic-high. In suspend mode, the USB differential receiver is turned off and VBUS consumes 38µA (typ) of supply current. The single-ended VP and VM receivers remain active to detect a SE0 state on USB bus lines D+ and D-. The USB transmitter

remains enabled in suspend mode to allow transmission of a remote wake-up on D+ and D-.

D+ and D-

D+ and D- are either USB signals or UART signals, depending on the operating mode. In USB mode, D+/D- serve as receiver inputs when \overline{OE} is logic-high and transmitter outputs when \overline{OE} is logic-low. Internal series resistors are provided on D+ and D- to allow a direct interface with a USB connector. In UART mode, D+ is an input and D- is an output. UART signals on Tx are presented on D-, and signals on D+ are presented on Rx. The UART signaling levels for D+/D- are determined by VUART. Logic thresholds for Rx and Tx are determined by VL. D+ and D- are ESD protected to ±15kV HBM.

RCV RCV is the output of the differential USB receiver. RCV is a logic 1 for D+ high and D- low. RCV is a logic 0 for D+ low and D- high. RCV retains the last valid logic state when D+ and D- are both low (SE0). RCV is driven logic-low when SUS is high. See Tables 3a and 3b.

\$BD\$ The bus-detect (BD) output is asserted logic-high when a voltage greater than V_{TH-BUS} is presented on $V_{BUS}.$ This is typically the case when the MAX3349E is connected to a powered USB. BD is logic-low when V_{BUS} is unconnected.

ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. Additional ESD-protection structures guard D+ and D- against damage from ESD events up to ± 15 kV. The ESD structures arrest ESD events in all operating modes: normal operation, suspend mode, and when the device is unpowered.

Several ESD testing standards exist for gauging the robustness of ESD structures. The ESD protection of the MAX3349E is characterized to the following standards:

±15kV Human Body Model (HBM)

±8kV Air-Gap Discharge per IEC 61000-4-2

±8kV Contact Discharge per IEC 61000-4-2

Human Body Model

Figure 9 shows the model used to simulate an ESD event resulting from contact with the human body. The model consists of a 100pF storage capacitor that is

charged to a high voltage, then discharged through a $1.5 \text{k}\Omega$ resistor. Figure 10 shows the current waveform when the storage capacitor is discharged into a low impedance.

IEC 61000-4-2 Contact Discharge

The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. It does not specifically refer to integrated circuits. The major difference between tests done using the Human Body Model and IEC 61000-4-2 is a higher peak current in IEC 61000-4-2 due to lower series resistance. Hence, the ESD withstand voltage measured to IEC 61000-4-2 is typically lower than that measured using the Human Body Model. Figure 11 shows the IEC 61000-4-2 model. The Contact Discharge method connects the probe to the device before the probe is charged. Figure 12 shows the current waveform for the IEC 61000-4-2 Contact Discharge Model.

ESD Test Conditions

ESD performance depends on a variety of conditions. Please contact Maxim for a reliability report documenting test setup, methodology, and results.

Applications Information

Data Transfer in USB Mode

Transmitting Data to the USB

To transmit data to the USB, operate the MAX3349E in USB mode (see the *Operating Modes* section), and drive \overline{OE} low. The MAX3349E transmits data to the USB differentially on D+ and D-. VP and VM serve as differential input signals to the driver. When VP and VM are both driven low, a single-ended zero (SE0) is output on D+/D-.

Receiving Data from the USB

To receive data from the USB, operate the MAX3349E in USB mode (see the *Operating Modes* section.) Drive \overline{OE} high and SUS low. Differential data received at D+/D- appears as a logic signal at RCV. VP and VM are the outputs of single-ended receivers on D+ and D-.

Data Transfer in UART Mode

In UART mode, D+ is an input and D- is an output. UART signals on Tx are presented on D-, and signals on D+ are presented on Rx. The UART signaling levels for D+/D- are determined by VUART. The voltage thresholds for Rx and Tx are determined by VL. The voltage thresholds for D+ and D- are determined by VUART.

Figure 13. UART Transmitter Timing

Power-Supply Decoupling

Bypass V_{BUS}, V_L, and V_{UART} to ground with 0.1 μ F ceramic capacitors. Additionally, bypass V_{TRM} to ground with a 1 μ F ceramic capacitor. Place all bypass capacitors as close as possible to the device .

Power Sequencing

There are no power-sequencing requirements for $V_{\text{L}},$ $V_{\text{UART}},$ and $V_{\text{BUS}}.$

_Timing Diagrams

MAX3349E

Figure 14. UART Receiver Timing

UCSP Application Information

For the latest application details on UCSP construction, dimensions, tape carrier information, printed circuitboard techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note UCSP- A Wafer-Level Chip-Scale Package available on Maxim's website at www.maxim-ic.com/ucsp.

Typical Operating Circuit

Chip Information

PROCESS: BICMOS

MAX3349E

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 UCSP	B16+1	<u>21-0101</u>	Refer to Application Note 1891
16 TQFN-EP	T1644+4	<u>21-0139</u>	<u>90-0070</u>

_Functional Diagram

MAX3349E

MAX3349E

_ Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	3/06	Initial release	—
1	5/11	Added MAX3349EEBE+T to the <i>Ordering Information</i> and adjusted specifications in the <i>Electrical Characteristics</i>	1, 2

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600