Is Now Part of # ON Semiconductor® To learn more about ON Semiconductor, please visit our website at www.onsemi.com ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo www.onsemi.com ## FCB070N65S3 # N-Channel SuperFET® III MOSFET ## **650 V, 44 A, 70 m**Ω #### **Features** - 700 V @ T_J = 150 °C - $R_{DS(on)} = 62 \text{ m}\Omega \text{ (Typ.)}$ - Ultra Low Gate Charge (Typ. Q_q = 78 nC) - Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 715 pF) - 100% Avalanche Tested - · RoHS Compliant ## **Applications** - · Telecom / Server Power Supplies - · Industrial Power Supplies - · UPS / Solar ## **Description** SuperFET[®] III MOSFET is ON Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advance technology is tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate. Consequently, SuperFET III MOSFET is very suitable for various AC/DC power conversion for system miniaturization and higher efficiency. ### Absolute Maximum Ratings T_C = 25°C unless otherwise noted. | | Parameter | FCB070N65S3 | Unit | |-------------------------------|--|--|------| | Drain to Source Voltage | | 650 | V | | Cata ta Causaa Maltaga | - DC | ±30 | V | | Gate to Source voltage | - AC (f>1 Hz) | ±30 | V | | Desir Coment | - Continuous (T _C = 25°C) | 44 | | | Drain Current | - Continuous (T _C = 100°C) | 28 | A | | Drain Current | - Pulsed (Note 1) | 110 | Α | | Single Pulsed Avalanche Energ | y (Note 2) | 214 | mJ | | Avalanche Current | Avalanche Current (Note 1) | | Α | | Repetitive Avalanche Energy | (Note 1) | 3.12 | mJ | | MOSFET dv/dt | | 100 | 1// | | Peak Diode Recovery dv/dt | (Note 3) | 20 | V/ns | | Device Dissipation | $(T_C = 25^{\circ}C)$ | 312 | W | | Power Dissipation | - Derate Above 25°C | 2.5 | W/°C | | Operating and Storage Tempera | Operating and Storage Temperature Range | | | | Maximum Lead Temperature for | Soldering, 1/8" from Case for 5 Seconds | 300 | οС | | | Gate to Source Voltage Drain Current Drain Current Single Pulsed Avalanche Energ Avalanche Current Repetitive Avalanche Energy MOSFET dv/dt Peak Diode Recovery dv/dt Power Dissipation Operating and Storage Tempera | $ \begin{array}{c} \text{Drain to Source Voltage} \\ \text{Gate to Source Voltage} \\ \end{array} \begin{array}{c} -\text{DC} \\ -\text{AC} \\ \end{array} \begin{array}{c} -\text{Continuous} \ (T_{\text{C}} = 25^{\circ}\text{C}) \\ -\text{Continuous} \ (T_{\text{C}} = 100^{\circ}\text{C}) \\ \end{array} \\ \text{Drain Current} \\ \end{array} \begin{array}{c} -\text{Continuous} \ (T_{\text{C}} = 100^{\circ}\text{C}) \\ -\text{Continuous} \ (T_{\text{C}} = 100^{\circ}\text{C}) \\ \end{array} \\ \text{Drain Current} \\ \text{Single Pulsed Avalanche Energy} \\ \text{Avalanche Current} \\ \text{Repetitive Avalanche Energy} \\ \text{Repetitive Avalanche Energy} \\ \text{MOSFET dv/dt} \\ \text{Peak Diode Recovery dv/dt} \\ \end{array} \begin{array}{c} \text{(Note 1)} \\ \text{(Note 3)} \\ \end{array} \\ \end{array}$ | | #### **Thermal Characteristics** | Symbol | Parameter | FCB070N65S3 | Unit | |-----------------|--|-------------|------| | $R_{ heta JC}$ | Thermal Resistance, Junction to Case, Max. | 0.4 | | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient (Minimum Pad of 2-oz Copper), Max. | 62.5 | °C/W | | | Thermal Resistance, Junction to Ambient (1 in ² Pad of 2-oz Copper), Max. | 40 | | ## **Package Marking and Ordering Information** | Part Number | Top Mark | Package | Packing Method | Reel Size | Tape Width | Quantity | |-------------|-------------|---------------------|----------------|-----------|------------|-----------| | FCB070N65S3 | FCB070N65S3 | D ² -PAK | Tape and Reel | 330 mm | 24 mm | 800 units | ## **Electrical Characteristics** $T_C = 25^{\circ}C$ unless otherwise noted. | Symbol | Parameter | lest Conditions | win. | тур. | wax. | Unit | |---|---|---|------|------|------|------| | Off Charac | cteristics | | | | | | | BV _{DSS} | Drain to Source Breakdown Voltage | $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 25^{\circ}\text{C}$ | 650 | - | - | V | | Diani to Source Breakdown voltage | $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 150^{\circ}\text{C}$ | 700 | - | - | V | | | ΔBV _{DSS}
/ ΔΤ _J | Breakdown Voltage Temperature
Coefficient | I _D = 1 mA, Referenced to 25°C | - | 0.72 | - | V/°C | | 1 | Zero Gate Voltage Drain Current | $V_{DS} = 650 \text{ V}, V_{GS} = 0 \text{ V}$ | 1 | - | 1 | μА | | I _{DSS} | zero Gate voltage Drain Current | $V_{DS} = 520 \text{ V}, V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$ | 1 | 2.2 | - | μΑ | | I _{GSS} | Gate to Body Leakage Current | $V_{GS} = \pm 30 \text{ V}, V_{DS} = 0 \text{ V}$ | | - | ±100 | nA | #### **On Characteristics** | V _{GS(th)} | Gate Threshold Voltage | $V_{GS} = V_{DS}$, $I_D = 4.4$ mA | 2.5 | - | 4.5 | V | |---------------------|--------------------------------------|---|-----|----|-----|----| | R _{DS(on)} | Static Drain to Source On Resistance | $V_{GS} = 10 \text{ V}, I_D = 22 \text{ A}$ | - | 62 | 70 | mΩ | | 9 _{FS} | Forward Transconductance | $V_{DS} = 20 \text{ V}, I_{D} = 22 \text{ A}$ | - | 29 | - | S | ### **Dynamic Characteristics** | C _{iss} | Input Capacitance | V _{DS} = 400 V, V _{GS} = 0 V, | - \ | 3090 | - | pF | |------------------------|-----------------------------------|---|-----|------|---|----| | C _{oss} | Output Capacitance | f = 1 MHz | - | 68 | - | pF | | C _{oss(eff.)} | Effective Output Capacitance | V _{DS} = 0 V to 400 V, V _{GS} = 0 V | - | 715 | - | pF | | C _{oss(er.)} | Energy Related Output Capacitance | V _{DS} = 0 V to 400 V, V _{GS} = 0 V | - | 104 | - | pF | | Q _{g(tot)} | Total Gate Charge at 10V | V _{DS} = 400 V, I _D = 22 A, | - | 78 | - | nC | | Q_{gs} | Gate to Source Gate Charge | V _{GS} = 10 V | - | 18 | - | nC | | Q _{gd} | Gate to Drain "Miller" Charge | (Note 4) | - | 30 | - | nC | | ESR | Equivalent Series Resistance | f = 1 MHz | - | 0.6 | - | Ω | ### **Switching Characteristics** | $t_{d(on)}$ | Turn-On Delay Time | | | - | 26 | - | ns | |---------------------|---------------------|---|----------|-----|----|---|----| | t _r | Turn-On Rise Time | $V_{DD} = 400 \text{ V}, I_D = 22 \text{ A},$ | | - | 52 | - | ns | | t _{d(off)} | Turn-Off Delay Time | V_{GS} = 10 V, R_g = 4.7 Ω | | - / | 89 | - | ns | | t _f | Turn-Off Fall Time | | (Note 4) | | 16 | - | ns | #### **Drain-Source Diode Characteristics** | Is | Maximum Continuous Source to Drain Diode Forward Current | | - | - | 44 | Α | |-----------------|--|--|---|-----|-----|----| | I _{SM} | Maximum Pulsed Source to Drain Diode Forward Current | | - | - | 110 | Α | | V_{SD} | Source to Drain Diode Forward Voltage | V _{GS} = 0 V, I _{SD} = 22 A | - | - | 1.2 | V | | t _{rr} | Reverse Recovery Time | V _{GS} = 0 V, I _{SD} = 22 A, | - | 435 | - | ns | | Q _{rr} | Reverse Recovery Charge | $dI_F/dt = 100 A/\mu s$ | - | 9.2 | -// | μС | #### Notes - 1. Repetitive rating: pulse width limited by maximum junction temperature. - 2. I_{AS} = 4.8 A, R_G = 25 Ω , starting T_J = 25°C. - 3. I $_{SD} \leq$ 44 A, di/dt \leq 200 A/µs, V $_{DD} \leq$ BV $_{DSS},$ starting T $_{J}$ = 25°C. - ${\bf 4.} \ {\bf Essentially\ independent\ of\ operating\ temperature\ typical\ characteristic.}$ ## **Typical Performance Characteristics** Figure 1. On-Region Characteristics Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage Figure 5. Capacitance Characteristics Figure 2. Transfer Characteristics Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature Figure 6. Gate Charge Characteristics ## **Typical Performance Characteristics** (Continued) Figure 7. Breakdown Voltage Variation vs. Temperature Figure 9. Maximum Safe Operating Area Figure 11. Eoss vs. Drain to Source Voltage Figure 8. On-Resistance Variation vs. Temperature Figure 10. Maximum Drain Current vs. Case Temperature ## **Typical Performance Characteristics** (Continued) Figure 12. Transient Thermal Response Curve Figure 13. Gate Charge Test Circuit & Waveform Figure 14. Resistive Switching Test Circuit & Waveforms Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative